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The steady separated flow past a circular cylinder was investigated experi- 
mentally. By artificially stabilizing the steady wake, this system was studied 
up to Reynolds numbers R considerably larger than any previously attained, 
thus providing a much clearer insight into the asymptotic character of such flows 
at high ReynoIds numbers. Some of the experimental results were unexpected. 
It was found that the pressure coefficient at the rear of the cylinder remained 
unchanged for 25 < R < 177, that the circulation velocity within the wake 
approached a non-zero limit as the Reynolds number increased, and that the 
wake length increased in direct proportion to the Reynolds number. 

1. Introduction 
The streaming motion of fluids past arbitrary slender objects is a phenomenon 

which is, by now, well understood. Many books and literally thousands of articles 
have been written on the subject, and many methods have been developed, 
exact as well as approximate, for calculating flow-fields under the most diverse 
conditions: with and without heat transfer from the object, with suction or 
blowing from the solid surface, with variable fluid properties, and so on. This 
truly great advance in the science of fluid mechanics has come about with the 
development and application of boundary-layer theory. 

Boundary-layer theory is essentially a perturbation technique which, starting 
from the steady-state limiting solution of the Navier-Stokes equations for 
vanishing viscosity, enables the construction of solutions for small but finite 
viscosity. 0 Clearly then, knowledge of the correct limiting solution is an essential 
prerequisite for the success of such an approach. Undoubtedly, in the case of 
flow past slender objects, the limiting solution is the corresponding continuous 
potential-flow solution, and no ambiguity seems to exist concerning the general 
nature of the steady flow at high Reynolds numbers. It is well known, however, 

* Present address : Fairchild Semiconductor Research Laboratories, Palo Alto, California. 
t Present address : General Electric Company Space Sciences Laboratory, King of 

$ Present address : Stanford University, Stanford, California. 
0 In this context, the word ‘viscosity’ is used in a dimensionless sense, i.e. the recipro- 

Prussia, Pennsylvania. 

cal of the Reynolds number. 
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that for flow past bluff bodies, where separation of the flow from the solid surface 
takes place, the continuous potential flow solution yields a pressure distribution 
that is so grossly inaccurate that it cannot be used to predict either the drag or, 
via a standard boundary-layer type analysis, the rates of transport of vor- 
ticity, heat and mass from the surface to the streaming fluid. It appears therefore 
that the continuous potential flow solution is not the correct limiting solution for 
flows where separation occurs, and that, before such flows could be analysed 
rigorously, the correct limiting or asymptotic solution for steady separated 
flows would have to be found (Goldstein 1960). 

How to obtain this limiting solution is an old question which still remains 
substantially unanswered. From a theoretical stand-point one may of course 
assume that, just as for the streaming flow past slender objects, the thickness 
of the regions where the effects of viscosity cannot be neglected vanishes with 
vanishing viscosity, such regions becoming everywhere infinitesimally thin 
shear layers in the limit. Yet, even if this simplified point of view is adopted, the 
problem still remains unsolved; for, when separation takes place, these shear 
layers leave the surface of the solid body and their position becomes unknown. 
Nor can experimental observations be of much help. As a rule, separated flows 
become unstable a t  relatively low Reynolds numbers and few conclusions, if 
any, can be drawn from such unsteady flows regarding the asymptotic nature of 
the steady flow a t  large Reynolds numbers. A third approach, involving the 
numerical solution of the full Navier-Stokes equations, has also been tried, but 
here the calculational difficulties mount greatly as the Reynolds number is 
increased since a very small mesh size is required a t  large Reynolds numbers 
for any proper description of the flow field. Consequently, numerical solutions 
have been performed only up to a Reynolds number of 40 (Thom 1933; Kawaguti 
1953 b ;  Apelt 1961)) which is not large enough to reveal the asymptotic character 
of the steady flow. 

Under such conditions, therefore, it has been found necessary to introduce 
into the analysis of this problem a number of postulates which could not be 
substantiated by experimental observations. Perhaps the most important 
assumption that has customarily been made is that the limiting solution of the 
Navier-Stokes equations for the case of vanishing viscosity will be a solution of 
the limit of the equations, namely the Euler equations. Even so, an important 
difficulty immediately arises for separated flows. The Euler equations possess 
not one, but an infinite number of solutions (Landau & Lifschitz 1959) and it is 
impossible to tell a priori which one of these, if any, represents the correct limit 
of the steady flow. 

It is convenient now to group the proposed solutions, all of which satisfy the 
Euler equations, into two broad categories. The first contains the familiar 
Helmholtz-Kirchhoff free-streamline model in which the wake, enclosed by 
two free-streamlines, is assumed to consist of a completely stagnant fluid a t  the 
same pressure as that of the undisturbed stream. As a result, the width of the 
wake increases parabolically with distance from the body. The Kirchhoff- 
flow was proposed as the limiting solution by Squire (1934)) Imai (1953) and 
Kawaguti (1953a). 
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In the other group are solutions having finite wakes or no wake at all. Included 
are the well-known continuous potential flow model for flow around a circular 
cylinder (Milne-Thomson 1960)) Foppl’s vortex model (1913), developed by 
Shair (1963), which gives a streamline structure rather similar to the one observed 
in steady flow at moderate Reynolds numbers, and Batchelor’s proposal (1956) 
consisting of a closed wake of finite length within which the vorticity has a 
constant, non-zero value. All solutions in this group yield a zero pressure drag 
for the object. This, of course, is contrary to experience with real flows; but, as 
Batchelor has rightly pointed out, our experience with large Reynolds number 
motion is limited to unsteady flows and is therefore inapplicable to the hypo- 
thetical case of the asymptotic steady flow. 

In  addition to these solutions of the Euler equations, a number of inviscid 
flow configurations have been proposed for the more practical purpose of approxi- 
mating real high Reynolds number flows past bluff bodies. Of these, Roshko’s 
model (Roshko 1954, 1955; Woods 1955; Wu 1956, 1962) deserves special men- 
tion. In  a sense, it  is a modification of the Kirchhoff-flow in that it allows for an 
arbitrary low wake pressure which can then be adjusted to agree with the experi- 
mentally observed value. The Roshko model yields the pressure distribution 
around a number of objects in good agreement with the experimental results if 
the wake pressure is properly chosen. In  spite of its usefulness, however, this 
model suffers from the fact that it  requires the use of an artifice, the purpose of 
which is to force a complete pressure recovery in the wake of the body. Also 
included in this category are Riabouchinsky’s plate model (1920) and Gilbarg 
& Serrin’s re-entrant jet model (1950), both of which, however, contain fictitious 
mathematical devices that render them physically unrealistic. 

From what has been said so far, it  is clear that our present knowledge con- 
cerning the nature of steady separated flows at  high Reynolds numbers is quite 
limited, and that a much better insight into the basic mechanisms and phenomena 
involved could be obtained from a detailed experimental study of flows with 
steady wakes, such as the streaming motion past a circular cylinder, rather than 
from a continued synthesis of new mathematical models. To be sure, the steady 
separated flow past a circular cylinder has been studied before experimentally 
(Thom 1933; Homann 1936a and Taneda 1956), but, because of the onset of 
instability at  a Reynolds number as low as 40,* these studies yield little informa- 
tion about the asymptotic nature of the steady flow. Recent findings, however, 
regarding the stabilizing influence of the confining walls of the experimental 
equipment (Shair, Grove, Petersen & Acrivos 1963) and of a downstream splitter 
plate (described in the Appendix) made it possible for us to extend these experi- 
mental studies up to a Reynolds number of about 300, which it was hoped would 
be large enough to provide us not only with a better understanding of the 
limiting character of the steady separated flow, but also with a firmer basis either 
for selecting one of the already existing inviscid models or for developing an 
improved theoretical solution to this general problem. 

In what follows, we shall present the principal features of an experimental 

* The Reynolds number is R = Ud/v, where U is the velocity of the undisturbed stream, 
d is the cylinder diameter and v is the kinematic viscosity. 
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investigation of the steady separated flow past a circular cylinder in the Reynolds 
number range of about 30 to 300. Of particular interest are the pressure dis- 
tribution around the cylinder, the structure of the steady wake, as well as the 
magnitude of the backflow velocity within the wake, all of which were determined 
with the aid of an oil tunnel and some rather novel experimental techniques. 
Since the chief objective of this study was to establish experimentally the 
asymptotic nature of the steady flow, considerable emphasis was placed upon 
observing the variation of the flow characteristics with increasing Reynolds 

Plexiglass test-section, 

Refrigerator 

FIGURE 1. Schematic illustration of the oil tunnel 
(approximately to scale). 

number. Yet, particular attention was also paid to the possible effect of the 
presence of the walls and the splitter plate on the experimental results, in order 
to ascertain with some confidence whether or not these results would still be valid 
in the ideal case of a truly two-dimensional, infinite flow-field without a splitter 
plate. All these experiments were performed in a tunnel (shown schematically 
in figure 1 and described in detail by Shah 1961; Shah, Petersen & Acrivos 1962; 
and by Shair 1963) in which a Newtonian lubricating oil with a viscosity of about 
1 P was recirculated past a horizontal circular cylinder placed in the centre of 
the test section with its axis normal to the direction of the main flow. 

2. Pressure measurements 
(a)  ~ x p e r i ~ e n t a z  technique 

Pressures on the cylinder surface were measured by a simple manometer tech- 
nique. A small hole was drilled into the cylinder, exactly half-way between its 
two ends, and then connected to a vertical glass tube where the oil level could be 
read by means of a cathetometer with an accuracy of a.bout k 0.005 cm. The 
cylinder could be rotated about its axis and the position of the hole relative to 
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the front stagnation point could be established to within f 1' by means of a 
protractor scale. Three such pressure cylinders were used, 4, 1 and lgin. in 
diameter) respeptively. 

Before the pressure measurements could be interpreted properly) it was found 
necessary to determine first of all the correct static pressure and the correct 
characteristic velocity for the flow. Clearly) in the case of a cylinder immersed 
in an unbounded uniform stream there is no ambiguity in the definition of 
these two quantities: they are the constant pressure and velocity of the stream 
far away from the cylinder. For low Reynolds number flow in a tunnel or a 
channel, however, the fluid velocity and pressure vary significantly along the 
axis of the test section) even in the absence of the cylinder, due to the boundary 
layer built up along the walls of the equipment. 

In  order to overcome this difficulty) the following compromise was adopted. 
The static pressure was taken to be the pressure measured by means of a mano- 
meter fitted to a tap in the bottom of the test section directly below the centre of 
the cylinder, and the characteristic velocity for a given experiment was chosen 
to be the velocity which would exist at  the location of the centre of the cylinder, 
under flow conditions identical with those of the experiment) but in the absence of 
the cylinder. These choices would yield the correct static pressure and character- 
istic velocity in the limit as the diameter d -+ 0. How closely they approximated 
the correct values for a finite value of d could be decided only by experiment. 

The actual measurement of the static pressure, as defined above, was quite 
straightforward. The oil level in the static manometer was measured with the 
cathetometer, and, since the quantity of interest was always the difference 
between the cylinder and the static pressure, any capillary effects in the mano- 
meter tubes cancelled each other. 

The velocity of the oil at  various points within the test section was measured 
in the absence of the cylinder using an air-bubble tracer technique. A correlation 
was developed which could predict, with a maximum error of about k 5 yo, the 
velocity at any point along the centre-line of the test section as a function of the 
viscosity of the oil and the pump speed. Further details, as well as certain inter- 
esting observations concerning the velocity profiles and the pressure drop in the 
tunnel test section (Grove 1963)) will not be reported here since they are 
incidental to the principal contents of this paper. 

In what follows we shall make frequent use of the pressure coefficient (hereafter 
simply referred to as the pressure) at any angle 8 from the front stagnation point. 
It is defined as 

where p0 is the actual cylinder pressure) p is the fluid density and pStat. and U 
are, respectively, the static pressure and the characteristic velocity. 

$0 = ( ~ o - ~ s t a t . ) I i ~ U ~ ,  

( b )  The front stagnation pressure 

We shall next derive a theoretical expression for the front stagnation pressure, 
$,,. Along the stagnation streamline y = 0, the x component of the Navier- 
Stokes equations is 
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This can be integrated immediately from the front stagnation point, x = 0, 
to minus infinity upstream of the cylinder to yield 

which, for a high Reynolds number analysis, can be rearranged into 
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FIGURE 2.  The effect of Reynolds number on the front stagnation pressure. 

where 6 is the boundary-layer thickness. The second integral vanishes because 
of the irrotationality of the outer flow whilein the first integraltheusual boundary- 
layer approximation a2u/ax2 9 a2u/ay2 can be introduced. Hence, since 

au av 
ax ay 
- - - - = O  - at x=O,  

A 
= 1 + - +  ..., @* = 1---- - + u ~  ax x=6, R a u l  y=O 

(4) 

where the numerical value of A follows directly from the outer flow solution. 
Thus, if for example the continuous potential flow solution is selected (this 
solution holds quite well near the front stagnation point), A = 8, and therefore 

f j 0  = 1+(8/R)+ .... (5)t 

t Homann (1936b) arrived at this result through a somewhat different reasoning. 
5 Fluid Mech. 19 
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Front stagnation pressures, which were measured with the 4 in. diameter 
cylinder placed into the second porthole of the test-section, are shown in figure 2 
(for this cylinder the diameter to tunnel width ratio d / h  was 0.05, and the flow 
could be stabilized up to a Reynolds number of 180 using a splitter plate). 
Also shown are Homann’s ( 1 9 3 6 ~ )  measurements (including those with unsteady 
wakes), and a curve based on equation (5). Since the expected accuracy in U2 
is only about f l o % ,  the adopted technique appears to be satisfactory. 

It should be noted, incidentally, that the presence of a splitter plate behind the 
cylinder was found to have no effect on the front stagnation pressure. 

(c)  Pressure distribution around the cyZinder 

The pressure distribution around the &in. cylinder at  R = 40, both with and 
without the splitter plate, is shown in figure 3 together with similar measurements 
by Thorn (1933) and Homann (19364.  The agreement is good in spite of a slight 
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FIGURE 3. The pressure distribution around the cylinder : comparison with 
previous experiments; the effect of the splitter plate. 

difference in the Reynolds numbers. Clearly, the presence of the splitter plate 
had only a very small effect on the pressure profile. (The parameter c denotes the 
distance between the centre of the cylinder and the nearer (front) edge of the 
splitter plate. Thus, when c = i d ,  the splitter plate touches the cylinder.) 
Pressure distributions at three different Reynolds numbers but under otherwise 
identical conditions are presented in figure 4. From these, the appropriate 
pressure or form drag coefficients 

P r r  

J O  
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were calculated, and are shown in figure 5 together with Thorn’s (1933) and 
Homann’s (1936a) earlier results. Roshko’s data (1955), which were obtained 
a t  much higher Reynolds numbers than encountered in the present work, are 
also shown in this figure even though it is not clear whether the use of the long 
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FIGURE 5. The effect of Reynolds number on the pressure drag coefficient. 
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splitter plate in his experiments did in fact stabilize the wake (Roshko only 
reports prevention of vortex shedding). 

It is evident from figure 5 that the empirical expression 

CD,p = 0.62+ 12*6/R (7 )  
is in excellent agreement with the points pertaining to steady wakes, and that, 
at higher Reynolds numbers, there is an increasing deviation between the pres- 
sure drag coefficients for flows with steady and unsteady wakes. 
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FIGURE 6. The effect of Reynolds number on the rear stagnation pressure. 

The pressure at  the rear stagnation point, representative of the wake pressure, 
was recognized as a particularly important parameter and, for this reason, 
it was measured under a wide variety of conditions with the wake both steady 
and unsteady. The results of these measurements are shown in figure 6. 

Two important conclusions can immediately be drawn from this figure 
regarding steady wakes. First, that the rear pressure quickly reaches a limit of 
approximately - 0.45 as the Reynolds number is increased; and second, that this 
limit is attained, for all practical purposes, at  a Reynolds number as low as 25.  

( d )  Wall effect 
The pressure distribution was also measured using the 1 in. and 1 gin. diameter 
cylinders in order to study the effect of the proximity of the confining walls. 
The results, together with the data obtained with the 4 in. cylinder, are shown in 
figure 7. It can be seen that the general shape of the pressure profile is not changed 
and that the magnitude of the wall effect is not excessively large. 

One can gain some insight into the reasons behind the wall effect by consider- 
ing figure 8, plate 1. This photograph of the test section was taken with the 
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tunnel almost full and with a 2 in. diameter cylinder in the second porthole. The 
shape of the free surface, which approximately corresponds to the ‘static ’ 
pressure variation in a completely full test section, indicates the large effect 
which the presence of the cylinder exerts on the flow. Clearly, the pressure 
measured directly below the cylinder is no longer representative of the ‘effec- 
tive ’ static pressure under such conditions. Indeed, if the variation of the back- 
ground pressure is taken into account in an approximate manner, the difference 
between the pressure distributions around the 4 in. and the 1 in. cylinders is 
about halved. 

I I I I I I I I 

2 in. splitter plate 
d d  2.5 

7- 
0- 
A-- 

1 I I I I I I I 

60 120 186) 

8 

FIGURE 7 .  The cffcct of confining walls on the pressure distribution. 

The pressure drag coefficient was increased by the presence of the walls. For 
example, at  a Reynolds number of about 180, the pressure drag coefficient was 
found to be 0.68 for dlh = 0.05, 0.91 for d / h  = 0.1 and 1.06 for d / h  = 0.1875. 
However, in spite of this seemingly large dependence of the drag on the d/h 
ratio, there are good reasons for believing that the limiting form of the pressure 
profiles for dlh -+ 0 has already been reached where d / h  = 0.05. First of all, there 
is the satisfactory agreement, shown in figure 2 ,  between the experimentally 
determined stagnation pressures and equation (5), which was derived on theo- 
retical grounds. This agreement is still retained, incidentally, even if the numeri- 
cal value of the constant A in equation (4) is calculated from the actual pressure 
distribution at R = 177 rather than from the continuous potential flow solution 
(its value is changed from 8 to 7.76). Also, there is agreement with Tritton’s 
(1959) total drag measurements for which the d / h  ratio was practically zero. 
A t  R = 40, probably the highest value of the Reynolds number at which the 
wake was steady, Tritton reports a total drag coefficient of about 1.5. On the 
other hand, for d/h = 0.05, our experiments yield a pressure drag coefficient of 
0.94, to which must be added the friction drag coefficient. The latter can be 
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estimated by means of a standard laminar boundary-layer analysis using the 
measured pressure profile. The skin friction coefficient is thus found to be 
approximately equal to 0.46, which, when added to 0.94, results in a total drag 
coefficient of 1.4 in essential agreement with Tritton’s value. 

3. Development of the steady wake 
(a )  The wake-bubble boundary 

In steady separated flow there is a closed region of recirculating, vortex type 
motion behind the cylinder which, due to its closed nature, appears very much 
like a bubble. Some of the features of such a typical wake-bubble are shown 
in figure 9. Of these, the streamline which constitutes the boundary of the 
wake-bubble, extending from the separation point to the wake stagnation point, 
is of particular importance as it separates two distinct flow regions: the inner, 
vortex type flow, and the outer flow past the cylinder and the wake-bubble. 

Separation Wake-bubbIe Vortex Wake stagnation 
point boundary centre 

/ 

FIGTJRE 9. The steady separated flow past a circular cylinder. 

Under ordinary circumstances the wake-bubble boundary is invisible. Thoni 
distinguished it by an ink injection technique and Homann by the addition of 
tracer particles to the fluid. An alternative method was discovered by Shair 
(1963), who noticed that when the cylinder is heated the temperature of the 
fluid along the wake-bubble boundary is higher than elsewhere. This sharp local 
temperature variation is accompanied by a jump in refractive index and, as a 
result, the wake-bubble boundary becomes visible and can even be photographed. 
That this visual effect indeed takes place at the wake-bubble boundary as defined 
above was verified by the observation of the motion of tiny air-bubble tracers 
in the flow field around the cylinder. 

The reason for the existence of higher fluid temperature along the wake- 
bubble boundary is clear in view of Shair’s heat transfer experiments which 
showed that the maximum cylinder temperature occurred at the separation 
point. Hence, the temperature of the fluid along the streamline coming from 
the separation point (the wake-bubble boundary) will also be higher than 
elsewhere. 

At some distance downstream from the cylinder the higher local temperature 
of the wake-bubble was dissipated and the visual effect diminished; for this 
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reason, only part of the wake-bubble boundary could be observed. This part 
was accentuated by placing a vertical grid between the test section and the light 
source. Typical photographs taken with this arrangement a t  different Reynolds 
numbers, using a 2in. diameter heated cylinder, are presented in figures 10 to 
12, plate 2. (Flow is from right to left. The black circle is the image of the cylinder; 
the other circle downstream of it is the neighbouring porthole. The splitter plate 
appears as a thin line in the vicinity of the downstream porthole.) In obtaining 
these photographs, the camera was focused at the outline of the wake-bubble 
midway between the two faces of the cylinder. For this reason the nearer face of 
the cylinder (black circle) appears on the photographs somewhat larger than in 
reality. In the composite diagram, figure 13, which was prepared from the photo- 
graphs by tracing out the visible part of the wake-bubble boundary, a correction 
was made for this perspective effect. 

120 
85 

32 

- 8 5 ~ 2 0  
- - = = \  241 

323 

FIGURE 13. Development of the wake-bubble boundary with Reynolds 
number. 

The perspective effect also made it difficult to obtain the angle of separation, 
a,  directly from the photographs and a simple visual procedure was therefore 
adopted for this purpose. A circular paper disk was fitted to the face of the cylinder 
and on this disk the positions of both separation points were marked. Great 
care was taken to make the markings while sighting along that generator of 
the cylinder where separation took place. The paper disk was then removed 
and the angle between each of the separation points and a horizontal line was 
measured.? This visual method is believed to be accurate within +3".  As 
expected, the individual separation points were affected by the heating of the 
cylinder since, especially at lower Reynolds numbers, a slight upward tilting 
of the wake-bubble was observed which was undoubtedly due to natural con- 
vection. This, however, did not appear t o  influence the average value of the two 

t It should be carefully noted, however, that since the outline of the wake-bubble 
boundary appeared diffuse in the vicinity of the cylinder, the so-called separation angle, 
a ,  had to be determined by extrapolating the visible part of this boundary up to the cylin- 
der. It is believed, therefore, that the values of a reported here may not correspond exactly 
to the true separation point, i.e. the point a t  which the outer flow detaches itself from 
the surface of the cylinder. 
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separation points, nor, incidentally, did it affect the stability of the steady wake. 
In  some of the experiments, the separation points were also located by observing 
the motion of tiny air-bubble tracers in the vicinity of the unheated cylinder. 
Although this method was less reproducible than the one described above, it 
served as an independent check on the reliability of the heating method. 

In view of the above observations, the composite diagram of the wake- 
bubble boundary, figure 13, contains a correction for the slight tilting of the wake, 
and the separation angles shown in figure 14 are the averages of the upper and the 
lower values. Also included in figure 14 are the control data with the air-bubble 
tracers and a number of results from other investigations.-f 
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1 1 

The present da,ta appear to be about 5-10" below Homann's and Thom's. 
This deviation may be due to the different dlh ratios encountered in these cases. 
Whether this is indeed so could not be verified, because, with the experimental 
equipment used in the present work, meaningful determinations of the sepa- 
ration point could be made only with the 2 in. cylinder. At any rate, the devia- 
tions are not excessive. The presence or position of the splitter plate did not have 
any noticeable effect either on the shape of the wake-bubble or on the angle of 
separation. 

(b)  The internal structure of the wake-bubble 
The experimental technique which was used to study the details of the flow 
within the wake-bubble was essentially visual in nature. The motion of numerous 
tiny air-bubble tracers around the cylinder was observed and photographed (by 

t Homann's (1936a) data were read from a small-scale graph; how the data were 
originally obtained is not described in his paper. Thom's (1933) data were taken directly 
from his photographs and may well contain a perspective error. 
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1-2sec time exposure) with the test-section illuminated from top and bottom 
by floodlights. The photographs presented in figures 15-17, plates 3-5, illustrate 
the nature of the flow within the wake-bubble at three different Reynolds 
numbers. (The white spots were caused by the reflexion of light from screw holes 
drilled into the wall of the test section.) 

In  taking these photographs, the camera, which had a depth of field of about 
2 in., was focused on the vertical centre-plane of the test-section. For this reason, 
only air bubbles moving in the vicinity of this centre-plane appear on the photo- 
graphs; light coming from other air bubbles was diffuse and affected the plioto- 
graphs only by reducing their contrast. Further details of this technique are 
presented by Shair (1963). 

It is evident that the recirculating vortex-type motion, which had been 
known to characterize the steady wake a t  relatively low Reynolds numbers, 
persists as the Reynolds number is increased, provided that the wake remains 
steady. A similarity between wake-bubbles of different lengths was also observed. 

Through the visual observations of the motion of the air-bubble tracers, 
certain qualitative conclusions could be drawn concerning the magnitude 
of the velocity of the fluid in and about the wake-bubble. Thus, it  was noted that 
the fluid within the wake-bubble moved considerably slower than in the main 
stream. Similarly, one could observe the existence of a comparatively slow region 
just outside the wake-bubble boundary in the neighbourhood of the walrc 
stagnation point, the thickness of which was of the same order of magnitude 
as the cylinder diameter regardless of the length of the wake-bubble. 

The development of the wake-bubble with the Reynolds number was studied 
more quantitatively by observing the positions of the wake stagnation point 
and the vortex centre. These are two well-defined points which were easy to 
locate visually through the motion of the air-bubble tracers. The distance 
between the wake stagnation point and the cylinder centre, x,, is a good indica- 
tion of the length of the wake-bubble (see figure 9). Measurements of xL using the 
2 and lin.  diameter cylinders are presented in figures 18 and 19 respectively, 
where a straight-line relationship between x, and the Reynolds number for the 
entire range of the experiments is clearly evident. The straight lines drawn 
through the lower Reynolds number data of figures 18 and 19 are also shown in 
figure 20 together with the experimental results of Homann (1936~) and Taneda 
( 1956). It is apparent that the proximity of the walls tends to shorten the wake- 
bubble.? 

The effect of the presence of a splitter plate within the wake-bubble can 
also be seen from figures 18 and 19. After the wake stagnation point had reached 
the nearer (front) edge of the splitter plate, the length of the wake-bubble was 

t It is worth while to point out here that the static pressure drop along the length of a 
wake was quite small in comparison to the pressure coefficient a t  the rear stagnation 
point of the cylinder. For example, even for a value of x, as large as 4 in. (corresponding 
to cl = 9 in. and R N 180) the total pressure drop across the length of the wake was less 
than 0-1 x &pU2 (Grove 1963), whereas p’180 was, under these conditions, equal to - 0.45. 
Thus, it is safe to conclude that the values for &,, as measured with the 9 in. cylinder 
are not indicative of the static pressure drop along the wake, but, rather, are representative 
of a fundamental parameter of the separated flow. 
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reduced, but the position of the splitter plate had no noticeable effect on xL once 
the splitter plate was entirely within the wake-bubble. It should be pointed out 
in addition that neither the proximity of the walls nor the presence of the splitter 
plate appeared to have influenced the nature of the straight-line relationship 
between wake-bubble length and Reynolds number, and that only the slopes of 
these lines were affected. 
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FIGUHF, 18. The effect of Reynolds number on the length of the 
wake bubble. 

Measurements of the position of the vortex centre (the centre of recirculation 
within the wake-bubble; see figure 9) using the 2in. cylinder are shown in 
figure 21. It is evident from this figure that while the two twin vortex centres 
move downstream with increasing Reynolds number, their distance from the 
line of symmetry reaches a limit. 

The presence of a splitter plate within the wake-bubble does, of course, interfere 
with the recirculating motion. For this reason, both the presence and the position 
of the splitter plate can be expected to influence the location of the vortex centre. 
Such effects are believed to be responsible for the relatively strong scatter of the 
data in figure 21, although no systematic influence could be established. 
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FIGURE 21. The effect of Reynolds number on the position of 
the vortex centre. 

( c )  The velocity along the returning stagna,tion streamline 
The magnitude of the recirculation velocity within the wake-bubble relative to 
the velocity of the undisturbed flow is of very great interest, and especially its 
dependence on the Reynolds number. Yet, because of obvious experimental 
difficulties, no such measurements appear to have ever been undertaken. 

In  the present work, the fluid velocity within the wake-bubble was measured 
along the returning stagnation streamline (the streamline leading from the 
wake stagnation point to the rear of the cylinder) by using the stroboscopic air- 
bubble tracer technique reported elsewhere (Grove 1963). The word ‘returning ’ 
indicates that the direction of the flow here is opposite to that of the undisturbed 
flow. 

Figure 22 shows the variation of the backflow velocity along the returning 
stagnation streamline with distance from the cylinder. Three sets of such 
measurements were obtained by using the 2 in. diameter cylinder and air bubbles 
injected with the hypodermic needle. These data, represented by solid symbols, 
illustrate the nature of the variation of the velocity along that part of the return- 
ing stagnation streamline which is closer to the cylinder. (The heavy dotted line 
represents the inferred fluid velocity, while the light dotted line indicates the 
initial acceleration of the air bubbles upon injection into the fluid.) The remaining 
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set of measurements, represented by the open circles, were obtained with the 
1 in. cylinder and with air bubbles freely suspended in the fluid (i.e. not injected 
with the hypodermic needle). These data illustrate the nature of the variation of 
the velocity nearer to the wake stagnation point. While the measurements are 
by no means conclusive, the indication appears to be that the velocity varies 
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FIGURE 22. The backflow velocity along the returning stagnation streamline. 
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FIGURE 23. The maximum backflow velocity ratio. 

evenly along the returning stagnation streamline and that it reaches a maximum 
value at approximately that point which is closest to the vortex centre. 

The maximum backflow velocity, which seemed to be a suitable characteristic 
of the recirculation rate within the wake-bubble, was studied in further detail 
using both the 1 and 2in. diameter cylinders. The results are presented in 
figure 23, from which it is evident that the splitter plate strongly reduces the 
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backflow velocity.? As a result of this, the true undisturbed limit of the maximum 
backflow velocity ratio for large Reynolds numbers could not be established 
directly. Still, such a limit clearly exists and its magnitude is larger than 0.23 
(the limit with the splitter plate present). By correcting for the retarding in- 
fluence of the splitter plate, on the basis of either Goldstein’s theory (1933) for 
the velocity recovery behind a flat plate placed parallel to a uniform stream or the 
experimental results presented elsewhere (Grove 1963) ,  this undisturbed limit 
of the maximum backflow velocity ratio was estimated to be around 0.5. 

4. Conclusions 
An experimental investigation was carried out for the purpose of studying 

certain fundamental characteristics of the steady separated flow past a circular 
cylinder. Particular attention was paid to the variation of these characteristics 
with increasing Reynolds number, in the hope that the asymptotic nature of 
such steady flows for the case of very large Reynolds numbers could thereby be 
inferred. Such an investigation became possible when it was found that the 
steady separated flow past a cylinder could be artificially stabilized up to a 
Reynolds number of about 300, without significantly distorting other charac- 
istics of the flow, by the presence of a wall effect and by the use of a splitter 
plate within the wake. 

The more significant results of this study are the following: (i) The rear pres- 
sure coefficient reaches the value of approximately - 0.45 at R = 25 and remains 
unchanged up to R = 177. (ii) The pressure drag coefficient of the cylinder as a 
function of the Reynolds number is given by 

for CB,p = 0.62 + 12.6IR 10 < R < 177. 

(iii) The character of the wake-bubble behind the circular cylinder remains 
unchanged as the Reynolds number is increased and the vortex type circulation 
persists. Also, a similarity between wake-bubbles of different lengths is observed. 
(iv) The wake-bubble elongates with increasing Reynolds number in such a way 
that its length is proportional to the Reynolds number for 6 6 R < 280. (v) The 
magnitude of the maximum backflow velocity ratio along the returning stagna- 
tion streamline reaches a limit of 0.23 as the Reynolds number is increased with 
the splitter plate present. If allowance is made for the retarding influence of the 
splitter plate, the undisturbed ratio is estimated to reach a limit of 0.5. 

Thus, a substantial amount of additional information concerning the behaviour 
of steady separated flows is now available, to enable us to construct a model 
for the asymptotic flow at large Reynolds numbers with considerably more 
confidence than would have been justified in the past. 

This research project was supported in part by a grant from the Petroleum 
Research Fund administered by the American Chemical Society. Grateful 
acknowledgement is made to the donors of said fund. 

t As a matter of fact, the maximum return velocity may not necessarily lie along the 
return streamline when a splitter plate is present. 
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Appendix 
Roshko (1955) reported that the vortex shedding phenomenon could be 

prevented by placing a thin partition, or splitter plate, along the centreline 
of the wake downstream of a cylinder. Preliminary experiments by Shair 
(1 963) indicated that it was indeed possible to maintain a completely steady wake 
behind a circular cylinder at  Reynolds numbers considerably above the critical 
(at which fluctuations of the wake normally set in) by the use of such a splitter 
plate. 

Since it was also found that the effectiveness of the splitter plate in stabilizing 
the steady wake depended on its location relative to the cylinder as well as on its 
size, an arrangement was devised which allowed us to use several splitter plates 
of various widths and also to move the plates back and forth in relation t o  the 
cylinder. In  this arrangement, the splitter plate is held in a rack which in turn 
is fitted on to Lucite rails mounted on the inside of the walls of the test section. 
By turning a pinion penetrating into the test-section one can move the rack and 
therefore the splitter plate into the most favourable position. 

It was, of course, always desirable to use the narrowest splitter plate that 
would still stabilize the wake in order to minimize any distortions of the flow 
field due to the introduction of the plate. Hence it was important to find the 
most effective position for the splitter plate. It appeared that any splitter plate 
was most effective when its edge nearer to the cylinder was about 2 to 3 diameters 
downstream from the cylinder. If the Reynolds number was increased to a 
sufficiently large value, any given splitter plate, regardless of its position, eventu- 
ally failed to stabilize the wake. However, a wider splitter plate could still be 
effective. In  the experiments presented in this work, two splitter plates were used, 
2 and 4 in. wide, respectively. 

Figure 24, plate 1, shows the photograph of the tunnel test section with the 
gin. cylinder and the 2in. splitter plate in position. 
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